

A look at the
elephants trunk

Open Source Days 2012
Copenhagen, Denmark

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

http://www.flickr.com/photos/aussy_greg/255942923/

http://www.flickr.com/photos/aussy_greg/255942923/

PostgreSQL 9.2
● Is not yet done!
● Feature set still uncertain
● Many things are done

● Some completed
● Some partial

● We give no guarantees, sorry...
● Many “invisible” changes, not included

here

Development Schedule
● June 11, 2011: 9.1 branched, HEAD opened
● July 2011: Commitfest #1
● Sep 2011: Commitfest #2
● Nov 2011: Commitfest #3
● Jan 2012-: Commitfest #4 → Alpha 4?
● Beta releases
● Release candidates (before summer?)
● Release (after summer?)

Current state of tree
● CF4 in progress
● 2051 files changed,
236771 insertions(+),
80419 deletions(-)

● Already more than 9.1!

Many new features
● DBA and developer
● Replication and backup
● Performance
● Scalability

Many new features
● DBA and developer
● Replication and backup
● Performance
● Scalability

Many new features
● DBA and developer
● Replication and backup
● Performance
● Scalability

pg_stat_activity restructured

● Explicit state field
● Running, idle, idle in transaction etc

● current_query removed
● Instead we have query

● Current query when state=running
● Otherwise, last query

pg_cancel_backend()
● A user can cancel his/her own queries
● Even when connecting in a different

session
● Previously required superuser

Security barrier views

● Ability to create row-level security enforcing
VIEWs

● Performance cost due to optimization barrier

CREATE VIEW sec
WITH (security_barrier=yes)

AS SELECT foo
FROM bar WHERE x=y

Range Datatypes
● Arbitrary range datatypes

● Generalized version of e.g. period
● Store start/stop values
● Indexed lookups, exclusion constraints

CREATE TABLE bookings(room int,
during tsrange);
INSERT INTO bookings VALUES (1,
 '[2012-03-09 10:00, 2012-03-09 11:00]');

JSON datatype
● Native JSON datatype
● Currently only does JSON validation

● Future Improvements Expected (TM)

CREATE TABLE mytable (
 id int,
 j JSON
);

PL/V8
● Not actually in PostgreSQL core
● Extension works with previous versions as

well
● Integrates well with JSON datatype

● E.g. expressional indexes on JSON
extraction

Many new features
● DBA and developer
● Replication and backup
● Performance
● Scalability

Cascading replication
● Ability to use a replication slave as a relay
● Master doesn't need to talk to all replicas
● Off-loading processing or network
● Does not support synchronous mode

New sync mode: “write”
● synchronous_commit=”on” means

“release transaction when data is on disk
on slave”

● synchronous_commit=”write” means
“release transaction when data is in
memory on slave”

● Data loss if both master and slave
crashes

● Higher performance (RAM > disk)

Base backups from standby
● Run backups from slave instead of master
● Off-load master
● Only backups with pg_basebackup

supported

Streaming log archiver
● Create log archive using streaming

replication
● Avoids archive_command tradeoffs:

● No half-empty 16Mb blocks
● No long delays before shipping

pg_streamrecv -h server -D archivedir

Streaming log archiver
● Can also run during base backups
● Avoid requirement for high

wal_keep_segments just for backups
● In non-archived scenarios

pg_basebackup --xlog=stream

Many new features
● DBA and developer
● Replication and backup
● Performance
● Scalability

Index Only Scans
● If query contains only indexed columns,

avoid lookup in heap
● Can avoid lots of I/O
● Only works on pages that are 100% all-

visible
● Uses visibility map
● Partial index only scan often used

Better group commit
● When one transaction commits while

another is waiting for disk
● Wake up multiple queued processes at

once
● Previous versions would do one by one

● Hopefully they can avoid flushing...
● Decreased lock contention

Faster sorting
● Inline sort operators for in-memory

sorting
● Specialized fixed-size/structure aware

version of quicksort

Space Partitioned GiST
● Current GiST are all balanced trees
● SP-GiST supports non-standard trees

● K-D tree, Quadtree
– CAD, GIS, multimedia etc

● Suffix trees
– Substring, IP networks etc

Many new features
● DBA and developer
● Replication and backup
● Performance
● Scalability

Scalability challenges
● Many core machines
● Many concurrent transactions
● Short transactions

● (PostgreSQL already does very well on
long transactions to >64 cores)

● Benchmark box:
● 32 cores, ia64
● ~380Gb RAM

COPY batch insert
● Tuples received by COPY are batched
● Reduced WAL logging
● Reduced locking
● Much better scalability to multiple loaders

COPY batch insert

Fast path locking
● “Cheat” on non-exclusive locks
● “probably” nobody else will conflict
● Store locks locally instead of globally
● Only checked when someone tries to get

exclusive lock
● Exclusive-lock session pays the cost

Fast path locking

Split ProcArray
● All sessions have an entry in ProcArray
● Single global lock
● Shared lock whenever snapshots are

taken
● Exclusive lock whenever transactions

commit
● Split ProcArray into one array with “hot”

elements and one with “cold”

More small stuff
● Lazy VXID creation
● Spinlock improvements
● Sinval sync overhead

Total scalability results

More to come?
● Some features queued up
● Unknown if they'll make it

Better write-scaling
● Refactoring and enhancement of

XLogInsert
● Hold locks for shorter time
● More processing outside of locked

sections

Command Triggers
● Assign trigger to utility commands

● CREATE TABLE
● ALTER TABLE
● CREATE INDEX
● Etc etc

FDW for pgsql
● Access remote PostgreSQL servers
● Should've had this from the start...
● Better optimizations

● Join push-down etc

Foreign table statistics
● Collect frequency statistics on foreign

tables
● Used for optimizing queries accessing

remote tables
● Number of distinct values, MVCs, LCVs

etc

Parallel pg_dump
● Based on snapshot exporting
● Get transactionally consistent dump

across parallel sessions
● Increased performance in multi core

systems

pg_stat_statements

● Better normalization
● Based on internal query tree

representation

Even more?
● Several other things still discussed
● Feature freeze for new submissions!

Thank you!

Questions?

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net

Thanks to Heikki Linnakangas, Greg Smith and Nathan Boley
for benchmarks, tools and graphs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

