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PostgreSQL 9.2
● Is not yet done!
● Feature set still uncertain
● Many things are done

● Some completed
● Some partial

● We give no guarantees, sorry...
● Many “invisible” changes, not included 

here



  

Development Schedule
● June 11, 2011: 9.1 branched, HEAD opened
● July 2011: Commitfest #1
● Sep 2011: Commitfest #2
● Nov 2011: Commitfest #3
● Jan 2012-: Commitfest #4 → Alpha 4?
● Beta releases
● Release candidates (before summer?)
● Release (after summer?)



  

Current state of tree
● CF4 in progress
● 2051 files changed,
236771 insertions(+),
80419 deletions(-)

● Already more than 9.1!
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● DBA and developer
● Replication and backup
● Performance
● Scalability
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pg_stat_activity restructured

● Explicit state field
● Running, idle, idle in transaction etc

● current_query removed
● Instead we have query

● Current query when state=running
● Otherwise, last query



  

pg_cancel_backend()
● A user can cancel his/her own queries
● Even when connecting in a different 

session
● Previously required superuser



  

Security barrier views

● Ability to create row-level security enforcing 
VIEWs

● Performance cost due to optimization barrier

CREATE VIEW sec 
WITH (security_barrier=yes)

AS SELECT foo 
FROM bar WHERE x=y



  

Range Datatypes
● Arbitrary range datatypes

● Generalized version of e.g. period
● Store start/stop values
● Indexed lookups, exclusion constraints

CREATE TABLE bookings(room int,
during tsrange);
INSERT INTO bookings VALUES (1,
 '[2012-03-09 10:00, 2012-03-09 11:00]');



  

JSON datatype
● Native JSON datatype
● Currently only does JSON validation

● Future Improvements Expected (TM)

CREATE TABLE mytable (
  id int,
  j JSON
);



  

PL/V8
● Not actually in PostgreSQL core
● Extension works with previous versions as 

well
● Integrates well with JSON datatype

● E.g. expressional indexes on JSON 
extraction
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Cascading replication
● Ability to use a replication slave as a relay
● Master doesn't need to talk to all replicas
● Off-loading processing or network
● Does not support synchronous mode



  

New sync mode: “write”
● synchronous_commit=”on” means 

“release transaction when data is on disk 
on slave”

● synchronous_commit=”write” means 
“release transaction when data is in 
memory on slave”

● Data loss if both master and slave 
crashes

● Higher performance (RAM > disk)



  

Base backups from standby
● Run backups from slave instead of master
● Off-load master
● Only backups with pg_basebackup 

supported



  

Streaming log archiver
● Create log archive using streaming 

replication
● Avoids archive_command tradeoffs:

● No half-empty 16Mb blocks
● No long delays before shipping

pg_streamrecv -h server -D archivedir



  

Streaming log archiver
● Can also run during base backups
● Avoid requirement for high 

wal_keep_segments just for backups
● In non-archived scenarios

pg_basebackup --xlog=stream
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Index Only Scans
● If query contains only indexed columns, 

avoid lookup in heap
● Can avoid lots of I/O
● Only works on pages that are 100% all-

visible
● Uses visibility map
● Partial index only scan often used



  

Better group commit
● When one transaction commits while 

another is waiting for disk
● Wake up multiple queued processes at 

once
● Previous versions would do one by one

● Hopefully they can avoid flushing...
● Decreased lock contention



  

Faster sorting
● Inline sort operators for in-memory 

sorting
● Specialized fixed-size/structure aware 

version of quicksort



  

Space Partitioned GiST
● Current GiST are all balanced trees
● SP-GiST supports non-standard trees

● K-D tree, Quadtree
– CAD, GIS, multimedia etc

● Suffix trees
– Substring, IP networks etc
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Scalability challenges
● Many core machines
● Many concurrent transactions
● Short transactions

● (PostgreSQL already does very well on 
long transactions to >64 cores)

● Benchmark box:
● 32 cores, ia64
● ~380Gb RAM 



  

COPY batch insert
● Tuples received by COPY are batched
● Reduced WAL logging
● Reduced locking
● Much better scalability to multiple loaders



  

COPY batch insert



  

Fast path locking
● “Cheat” on non-exclusive locks
● “probably” nobody else will conflict
● Store locks locally instead of globally
● Only checked when someone tries to get 

exclusive lock
● Exclusive-lock session pays the cost



  

Fast path locking



  

Split ProcArray
● All sessions have an entry in ProcArray
● Single global lock
● Shared lock whenever snapshots are 

taken
● Exclusive lock whenever transactions 

commit
● Split ProcArray into one array with “hot” 

elements and one with “cold”



  

More small stuff
● Lazy VXID creation
● Spinlock improvements
● Sinval sync overhead



  

Total scalability results



  

More to come?
● Some features queued up
● Unknown if they'll make it



  

Better write-scaling
● Refactoring and enhancement of 

XLogInsert
● Hold locks for shorter time
● More processing outside of locked 

sections



  

Command Triggers
● Assign trigger to utility commands

● CREATE TABLE
● ALTER TABLE
● CREATE INDEX
● Etc etc



  

FDW for pgsql
● Access remote PostgreSQL servers
● Should've had this from the start...
● Better optimizations

● Join push-down etc



  

Foreign table statistics
● Collect frequency statistics on foreign 

tables
● Used for optimizing queries accessing 

remote tables
● Number of distinct values, MVCs, LCVs 

etc



  

Parallel pg_dump
● Based on snapshot exporting
● Get transactionally consistent dump 

across parallel sessions
● Increased performance in multi core 

systems



  

pg_stat_statements

● Better normalization
● Based on internal query tree 

representation



  

Even more?
● Several other things still discussed
● Feature freeze for new submissions!



  

Thank you!

Questions?

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net

Thanks to Heikki Linnakangas, Greg Smith and Nathan Boley
for benchmarks, tools and graphs
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